Journal of Organometallic Chemistry, 118 (1976) 305–308 © Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

DYNAMIC BEHAVIOUR IN (1'-t-BUTYL-2',2'-DIMETHYLPROPYL)-π-(TRICARBONYLCHROMIUM)BENZENE

F. VAN MEURS *, J.M.A. BAAS, J.M. VAN DER TOORN and H. VAN BEKKUM Laboratory of Organic Chemistry, Delft University of Technology, Julianalaan 136, Delft 2208 (The Netherlands)

(Received April 2nd, 1976)

Summary

The temperature dependence of the ¹H NMR spectrum of the title compound was studied over the temperature range 0–115°C. Two conformers were detected. The conformational isomerism is caused by a restricted rotation about the bond between the alkyl group and the complexed aromatic ring. The ΔG^{\dagger} value for the interconversion amounts to 16.9 kcal mol⁻¹, which is substantially smaller than the corresponding ΔG^{\dagger} value for the free ligand. This decrease is ascribed to additional steric strain between the alkyl and the tricarbonylchromium groups in the conformers of the complex.

Introduction

In a previous paper [1] we described the ¹H NMR spectra of (1'-t-butyl-2',2'-dimethylpropyl)- π -(tricarbonylchromium)benzene and the corresponding free ligand. In both compounds the two ortho (and meta) protons are inequivalent at room temperature. Equivalence can be obtained dynamically by a rapid interconversion of the conformers I and II. In an earlier study on some 3,4-disubstituted (1'-t-butyl-2',2'-dimethylpropyl)benzenes [2] the barrier to rotation about the C_1-C_{α} single bond was determined at 22 kcal mol⁻¹.

Recently, we have determined the molecular geometry of (1'-t-butyl-2',2'-dimethylpropyl)- π -(tricarbonylchromium)benzene [3]. Since the molecule possesses no strain-free conformations, it seemed worthwhile to determine the influence of steric interactions between the CH-t-Bu₂ group and the Cr(CO)₃ group upon the barrier to rotation about the C₁--C_{α} bond in the complex. This paper presents a study of the temperature dependence (0-115°C) of the ¹H NMR spectra of the title compound.

Results and discussion

¹H NMR spectra of the compound, dissolved in tetrachloroethene containing cyclosilane as internal standard, were recorded on a Varian XL-100-15 spectrometer equipped with a variable temperature accessory.

Spectra of (1'-t-butyl-2',2'-dimethylpropyl)- π -(tricarbonylchromium)benzene at 0 and 115°C are shown in Fig. 1. The assignment of the signals of the aromatic protons follows that given earlier [2]. This assignment was based on steric overcrowding [4], which may cause hindering of solvation [5]. The behaviour shown in the spectra points to the presence of two rotamers about $C_1 - C_{\alpha}$, I and II,

Fig. 1. ¹H NMR spectra of (1'-t-butyl-2',2'-dimethylpropyl)- π -(tricarbonylchromium)benzene (numbering according to formula III).

TABLE 1

COALESCENCE TEMPERATURES, FREQUENCY DIFFERENCES AND FREE ENERGIES OF ACTIVATION FOR THE CONFORMERS OF (1'-1-BUTYL-2',2'-DIMETHYLPROPYL)- π -(TRICARBONYL-CHROMIUM)BENZENE IN TETRACHLOROETHENE

	Aromatic protons		t-Bu protons	
	2 6	3 5		
T _c (°C)	74(3)	58(3)	66(1)	
$\Delta \nu^{a}$ (Hz)	42(1)	8(1)	38.6(0.5)	
ΔG^{\ddagger} at T_{c} (keal mol ⁻¹)	17.3(0.4)	17.5(0.4)	16.9(0.2)	

(standard deviations in parentheses)

^a Extrapolated to the coalescence temperature.

which exchange slowly at 0° C. At higher temperatures the exchange rate increases and the signals of the aromatic protons coalesce to an AA'BXX' pattern. Moreover, the two signals of the protons of the t-Bu groups coalesce to a single line. The coalescence temperatures and the barriers to rotation, which have been calculated using the simplified formulas [6] with a transmission coefficient of 1, are given in Table 1.

The most accurate value of ΔG_{339}^{\pm} (16.9 kcal mol⁻¹) is obtained from the coalescence of the t-Bu signals. The barrier to rotation about the $C_1 - C_{\alpha}$ bond in $(1'-t-butyl-2',2'-dimethylpropyl)-\pi$ -(tricarbonylchromium)benzene is substantially lower than the corresponding one in the free ligand ($\Delta G_{431}^{\ddagger}$ 22.2 kcal mol⁻¹ [2]). A comparison of the molecular structures of the title compound [3] and 1-(4-methoxyphenyl)-2,2,6,6-tetramethylcyclohexanol [7], which resembles the free ligand, gives confidence that the geometry around the C_1-C_{α} bond is similar, with the exception that in the complex C_{α} is forced, by 0.41 Å, out of the aromatic plane away from the $Cr(CO)_3$ group [3]. The exchange between conformers I and II via a clockwise rotation of the CH-t-Bu₂ group about the C_1-C_{α} bond in I (or an anti clockwise rotation in II) seems highly improbable because of the very unfavourable interactions between the t-Bu groups and the $Cr(CO)_3$ group on the same side of the ring, which should occur in the transition state of this rotation. Therefore, the conversion of conformer I into conformer II is restricted to an anti clockwise rotation (in I). In this transition state the interaction between the alkyl and the $Cr(CO)_3$ groups is negligible. The decrease of the barrier to rotation about the C_1 - C_{α} bond in the complex as compared with the free ligand is ascribed to a relief of steric strain between these two groups in this transition state. Thus, the strain present in the initial state (conformers I and II) of the complex must be about 5 kcal mol^{-1} larger than in the free ligand *.

Acknowledgements

The authors thank Mr. A. Sinnema for helpful discussions. This investigation was supported by the Netherlands Foundation for Chemical Research (SON)

^{*} It should be noted, however, that the two possible pathways for interconversion have equal probabilities in the free ligand, but not in the complex; for the comparison, the ΔG^{\dagger} value obtained for the complex is expected to be increased by 0.5 kcal mol⁻¹ due to a statistical factor in ΔS^{\dagger} [8].

308

with financial aid from the Netherlands Organization for the Advancement of Pure Research (ZWO).

References

- 1 F. van Meurs, J.M. van der Toorn and H. van Bekkum, J. Organometal. Chem., 113 (1976) 341.
- 2 J.M.A. Baas, Rec. Trav. Chim. Pays-Bas, 91 (1972) 1287.
- 3 F. van Meurs and H. van Koningsveld, J. Organometal. Chem., 118 (1976) 295.
- 4 F.A. Bovey, F.P. Hood, E. Pier and H.E. Weaver, J. Amer. Chem. Soc., 87 (1965) 2060.
- 5 D.H. Williams, J. Ronayne and R.G. Wilson, Chem. Commun., (1967) 1089.
- 6 J.A. Pople, W.G. Scheider and H.J. Bernstein, High-resolution Nuclear Magnetic Resonance, McGraw-Hill, New York, 1959, p. 223; R.J. Kurland, M.B. Rubin and M.B. Wise, J. Chem. Phys., 40 (1964) 2426; cf. D. Kost, E.H. Carlson and M. Raban, Chem. Commun., (1971) 656.
- 7 H. van Koningsveld, Cryst. Struct. Commun., 3 (1973) 491.
- 8 A.J.M. Reuvers, A. Sinnema, Th.J. Nieuwstad, F. van Rantwijk and H. van Bekkum, Tetrahedron, 27 (1971) 3713.